Cell-Autonomous Ca 2+ Flashes Elicit Pulsed Contractions of an Apical Actin Network to Drive Apical Constriction during Neural Tube Closure
نویسندگان
چکیده
منابع مشابه
Cell-Autonomous Ca(2+) Flashes Elicit Pulsed Contractions of an Apical Actin Network to Drive Apical Constriction during Neural Tube Closure.
Neurulation is a critical period in all vertebrates and results in the formation of the neural tube, which gives rise to the CNS. Apical constriction is one of the fundamental morphogenetic movements that drives neural tube closure. Using live imaging, we show that apical constriction during the neurulation is a stepwise process driven by cell-autonomous and asynchronous contraction pulses foll...
متن کاملLulu Regulates Shroom-Induced Apical Constriction during Neural Tube Closure
Apical constriction is an essential cell behavior during neural tube closure, but its underlying mechanisms are not fully understood. Lulu, or EPB4.1l5, is a FERM domain protein that has been implicated in apical constriction and actomyosin contractility in mouse embryos and cultured cells. Interference with the function of Lulu in Xenopus embryos by a specific antisense morpholino oligonucleot...
متن کاملRole of Rab11 in planar cell polarity and apical constriction during vertebrate neural tube closure
Epithelial folding is a critical process underlying many morphogenetic events including vertebrate neural tube closure, however, its spatial regulation is largely unknown. Here we show that during neural tube formation Rab11-positive recycling endosomes acquire bilaterally symmetric distribution in the Xenopus neural plate, being enriched at medial apical cell junctions. This mediolateral polar...
متن کاملShroom Induces Apical Constriction and Is Required for Hingepoint Formation during Neural Tube Closure
BACKGROUND The morphogenetic events of early vertebrate development generally involve the combined actions of several populations of cells, each engaged in a distinct behavior. Neural tube closure, for instance, involves apicobasal cell heightening, apical constriction at hingepoints, convergent extension of the midline, and pushing by the epidermis. Although a large number of genes are known t...
متن کاملMechanical roles of apical constriction, cell elongation, and cell migration during neural tube formation in Xenopus
Neural tube closure is an important and necessary process during the development of the central nervous system. The formation of the neural tube structure from a flat sheet of neural epithelium requires several cell morphogenetic events and tissue dynamics to account for the mechanics of tissue deformation. Cell elongation changes cuboidal cells into columnar cells, and apical constriction then...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Cell Reports
سال: 2015
ISSN: 2211-1247
DOI: 10.1016/j.celrep.2015.11.017